
Wrangle the outcome of an API service
Silvie Cinková

2025-08-12

Table of contents

1 Libraries 2

2 Data 3

3 Explore a GitHub repo of Gapminder 3

4 Break the task down 4

5 Download the list of files from GitHub 4

6 Call the API 5

7 JSON 5

8 API response 6

9 Extract the content part of an API response 6

10 Structure of a file name item 7

11 Parse JSON vs. Wrangle the list 8

12 Library jsonlite 8

13 Parse JSON from a character vector 8

14 Simplify the structure 9

15 Check it out for one file 9

16 Setting up the loop 1 10

1

17 The loop syntax explained 11

18 The loop filled 11

19 Add them to the data frame 12

20 Without loop, use purrr::map 12

21 Metadata explored 12

22 Try out mutate 13

23 We cannot extract the info from str nor summary 14

1 Libraries

library(httr)
library(jsonlite)
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

library(readr)
library(magrittr)
library(glue)
library(tidyr)

Attaching package: 'tidyr'

The following object is masked from 'package:magrittr':

extract

2

library(purrr)

Attaching package: 'purrr'

The following object is masked from 'package:magrittr':

set_names

The following object is masked from 'package:jsonlite':

flatten

2 Data

url <-
"https://api.github.com/repos/open-numbers/ddf--gapminder--systema_globalis/contents/countries-etc-datapoints"↪

Make the GET request
response <- GET(url)
write_lines(response,

"datasets_ATRIUM//ddf--gapminder--systema_globalis_files_from_GitHubAPI.json")↪
#

read_lines("datasets_ATRIUM//ddf--gapminder--systema_globalis_files_from_GitHubAPI.json",
n_max = 2)

↪
↪
#
filenames_df <- fromJSON(content(response, "text"), flatten = TRUE)
#
write_tsv(x = filenames_df, file =

"datasets_ATRIUM/GitHubURLs_Gapminder_SystemaGlobalis.tsv")↪

3 Explore a GitHub repo of Gapminder

• https://github.com/open-numbers/ddf--gapminder-- systema_globalis/tree/master/
countries-etc-datapoints

When you randomly open a few files, it looks as though each file were a table with three
columns, the first and second being geo (abbreviated country name) and time (year),
and the third being the social indicator in focus.

• If this is the case, we can create a one huge table with all indicators by joining
the tables.

3

https://github.com/open-numbers/ddf--gapminder--systema_globalis/tree/master/countries-etc-datapoints
https://github.com/open-numbers/ddf--gapminder--systema_globalis/tree/master/countries-etc-datapoints

Open the URL for illustration. Before, we picked files manually, now we can adopt a more
systematic approach.

4 Break the task down

• Get the list of all files from GitHub

• Read in all files

• Check the column names

• make full joins of all tables that have geo and time

– Why full joins? We don’t know they overlap.
– Clear of NAs later.

We can’t tell which countries and which years there are in each file. Depending on the research
question, we can operatively filter just non-NA rows, or decide that we want to have only
countries with a full sequence of years… etc. The immediate goal at this point is to make sure
we could make any join at all.

5 Download the list of files from GitHub

• GitHub API: https://api.github.com/

They give you a URL template. You fill in the files location.

https://api.github.com/repos/open-numbers/ddf--gapminder--systema_globalis/contents/
countries-etc-datapoints

We will use GitHub’s API to automatically retrieve all file names in that repository. For-
tunately, GitHub has one that makes this possible. Without it, you would have to try and
extract the file names from the html code of the website (scrape the website), which would be
a much harder task.

Note

API (Automated Programming Interface): an optional service provided by a web-
site to allow users to interact with the website programmatically.

You want the file names in a folder of a repository, so just give the API the URL of that
folder.

4

https://api.github.com/
https://api.github.com/repos/open-numbers/ddf--gapminder--systema_globalis/contents/countries-etc-datapoints
https://api.github.com/repos/open-numbers/ddf--gapminder--systema_globalis/contents/countries-etc-datapoints

6 Call the API

library(httr)
url <- glue("https://api.github.com/repos/open-numbers",

"/ddf--gapminder--systema_globalis/",
"contents/countries-etc-datapoints")

Make the GET request
response <- httr::GET(url)

The API sends back a machine-readable version of what you see in the web GUI. Mind that
it is not the raw html with the typesetting you would see if you viewed the source code of a
website, but a structure that holds just the content of the website as the designers of this API
defined it: the metadata of the files in this folder. Usually APIs give you a JSON file.

7 JSON

• JavaScript Object Notation

{"array": ["object1":}
{"name1": "property-string/bool",

"name2": number},
"object2": {"name222": "property..."}

]

You get back a JSON-formatted string that you can save to a file or directly process in R.
JSON is one of the standard interchange formats, like e.g. XML or HTML. It originates from
JavaScript, and it corresponds to its native data structures, but it became popular across
platforms because it is human-readable and technically practical at the same time, and each
programming language translates it in its own native structures. For instance, the default
interpretation of a JSON file in R is list.

Syntax in a nutshell: [contains an array of objects or other arrays. Each object is enclosed
in { and contains name-property (aka attribute-value) pairs. Sometimes the names/attributes
are also called keys. Letter case and punctuation matter, indentation does not.

5

8 API response

is.list(response)

[1] TRUE

names(response)

[1] "url" "status_code" "headers" "all_headers" "cookies"
[6] "content" "date" "times" "request" "handle"

This is the response. It has its own class called response, but in principle it is just a list. When
you save it, To be able to process the list of file names with R, you must first get rid of the
header with technical metadata and extract the content (one of the named elements). You
would be able to extract it as any other list elements with what you have learned about lists,
but httr comes with a convenience function called content.

9 Extract the content part of an API response

httr::content(response) %>% class()

[1] "list"

httr::content(response) %>% length()

[1] 490

httr::content(response) %>% names()

NULL

This would be the default translation of a JSON file: the array translates to a list. If you
look at the original, you will find out that each file name along with its metadata is one JSON
object in an array, but these objects are not named. Let us take a closer look at the first
element and hope that all have the same structure.

6

10 Structure of a file name item

content(response)[[1]] %>% class()

[1] "list"

content(response)[[1]] %>% names()

[1] "name" "path" "sha" "size" "url"
[6] "html_url" "git_url" "download_url" "type" "_links"

content(response)[[1]][1]

$name
[1] "ddf--datapoints--adults_with_hiv_percent_age_15_49--by--geo--time.csv"

content(response)[[1]]$`_links` %>% class()

[1] "list"

You subset a list to extract an element either by its position index in double square brackets
([[1]]) or, when available, by its name. When that name is weird (e.g. starts with an
underscore), enclose it in back ticks like when accessing a weird column name in a data frame.
That JSON item looked a bit more complex in the original, and hence it comes as no surprise
that it translated as a nested list inside an element of the content list. It is not just a name-
property pair, but a named object with three name-property pairs.

Tip

Recap what else you know about lists: You can access only one element at a time. When
you want to make a larger selection, you must create a subset of the list, that is, to make
a smaller list with the selected elements. And then access the individual elements one by
one again.

7

11 Parse JSON vs. Wrangle the list

• two valid approaches

• depends on JSON complexity

• maybe we can drop something

These are two valid approaches. Perhaps the more convenient one is parsing the JSON and
that is what we will do, but it is still useful to know that if there is an issue with JSON parsing,
we can fall back to working with an ordinary list!

12 Library jsonlite

• Read a character vector: from_JSON

– we have a list but httr::content can make it a vector

– all source JSON in one element

response_vec <- content(response, type = "text")

No encoding supplied: defaulting to UTF-8.

class(response_vec); length(response_vec)

[1] "character"

[1] 1

13 Parse JSON from a character vector

filenames_df <- fromJSON(response_vec, flatten = TRUE)
colnames(filenames_df)

[1] "name" "path" "sha" "size" "url"
[6] "html_url" "git_url" "download_url" "type" "_links.self"
[11] "_links.git" "_links.html"

8

write_tsv(filenames_df, "datasets_ATRIUM/gapminder_metadata_filenames.tsv")

By default, fromJSON simplifies the structures to fit them to a data frame. You can override
it, when you need to just change something in the JSON and return the same structure back,
but for our purposes it is the ideal. We have a data frame!!!

If you want to save it in a file, you must also flatten it. Before, it contained a column with
vectors inside. This is possible for tibbles, but not csv files. We will drop this column anyway.

14 Simplify the structure

filenames_df %<>% select(c(name, download_url, size))
filenames_df %<>% slice(1:10)
we take just 10 rows for a proof of concept

We only need the name and download url, perhaps size.

What do we ask again?

• file has columns geo and time : logical columns

• how many columns : numeric column

• maybe retrieve the column names of each file for future reference

At any rate we will have to read the files, at least one row to get the column names. One
very transparent way is to set up a loop and successively fill four objects: one vector for the
geo column, one vector for the time column, one vector for the number of columns, and a
list of vectors with column names. Then we can add them as columns (yes, a column name
of a data frame can contain a vector, see above). Keywords to this topic: tidyr, enframe,
unnest_longer, unnest_wider.

15 Check it out for one file

my_filecolnames <- read_csv(file =
filenames_df$download_url[1],

n_max = 1) %>%
colnames()

9

Rows: 1 Columns: 3
-- Column specification --
Delimiter: ","
chr (1): geo
dbl (2): time, adults_with_hiv_percent_age_15_49

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

geo_column <- "geo" %in% my_filecolnames
time_column <- "time" %in% my_filecolnames
colnames_length <- length(my_filecolnames)

16 Setting up the loop 1

• prepare empty objects before!

• sequence: filenames

filenames <- filenames_df$name
urls <- filenames_df$download_url
has_geo <- logical()
has_time <- logical()
colnames_length <- numeric()
file_colnames <- list()
Only now we can set up the loop

The idea with the loop is that each loop delivers four objects, which we collect in exactly the
same order as we input the filenames into the loop. First we need to set up these objects
as sort of empty shells and incrementally fill them with the outputs of the loop. The empty
objects must exist before the loop, and the adding is done inside the loop. The most efficient
way is to subset the object with the index of the loop iterator (that mysterious i) and assign
it a value that we get from the script inside the loop.

10

17 The loop syntax explained

for (i in seq_along(filenames)) {

}

You have a sequence on which you want to run a piece of code. That sequence is the vector of
file names. seq_along produces a vector with a numeric sequence starting with one and ending
with the position index of the last element of filenames. So it ought to have 10 elements,
because we sliced 10 rows from filenames_df.

seq_along(filenames)

[1] 1 2 3 4 5 6 7 8 9 10

Now, i becomes 1 in the first run, 2 in the second, and so on, until it finishes when it has run
through the code as 10. It is going to work for us as a subsetting index.

18 The loop filled

for (i in seq_along(filenames)) {
my_filecolnames <- read_csv(file =

filenames_df$download_url[i],
n_max = 1, show_col_types = FALSE) %>%

colnames()
geo_column <- "geo" %in% my_filecolnames
time_column <- "time" %in% my_filecolnames
now add these results as new elements to the objects!
has_geo[i] <- geo_column
has_time[i] <- time_column
colnames_length[i] <- length(my_filecolnames)
file_colnames[[i]] <- my_filecolnames
}

Note the [i] in read_csv. The variable my_filecolnames is going to result from a different
file in each run!

11

19 Add them to the data frame

metadata_explored <- filenames_df %>%
bind_cols(has_geo = has_geo,

has_time = has_time,
colnames_length = colnames_length) %>%

mutate(file_colnames = file_colnames) %>%
tidyr::unnest_wider(file_colnames, names_sep = "_")

20 Without loop, use purrr::map

get_details <- function(url) {
my_filecolnames <- readr::read_csv(file = url, n_max = 1, show_col_types =
FALSE) %>%↪
colnames()

geo_column <- "geo" %in% my_filecolnames
time_column <- "time" %in% my_filecolnames
colnames_length <- length(my_filecolnames)
tibble(

"url" = url,
"has_geo" = geo_column,
"has_time" = time_column,
"colnames_length" = colnames_length,

"file_colnames" = my_filecolnames)
}

otest <- purrr::map(filenames_df$download_url, ~ get_details(.x)) %>%
list_rbind()↪

#otest %<>% filter(!(file_colnames %in% c("geo", "time")))
metadata_explored2 <- left_join(filenames_df, otest, by = c("download_url" =

"url"))↪

21 Metadata explored

metadata_explored %>% slice(1:2) #%>% kableExtra::kable()

A tibble: 2 x 9
name download_url size has_geo has_time colnames_length file_colnames_1

12

<chr> <chr> <int> <lgl> <lgl> <dbl> <chr>
1 ddf--data~ https://raw~ 43902 TRUE TRUE 3 geo
2 ddf--data~ https://raw~ 9839 TRUE TRUE 3 geo
i 2 more variables: file_colnames_2 <chr>, file_colnames_3 <chr>

metadata_explored2 %>% slice(1:2) #%>% kableExtra::kable()

name
1 ddf--datapoints--adults_with_hiv_percent_age_15_49--by--geo--time.csv
2 ddf--datapoints--adults_with_hiv_percent_age_15_49--by--geo--time.csv

download_url
1 https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/countries-etc-datapoints/ddf--datapoints--adults_with_hiv_percent_age_15_49--by--geo--time.csv
2 https://raw.githubusercontent.com/open-numbers/ddf--gapminder--systema_globalis/master/countries-etc-datapoints/ddf--datapoints--adults_with_hiv_percent_age_15_49--by--geo--time.csv

size has_geo has_time colnames_length file_colnames
1 43902 TRUE TRUE 3 geo
2 43902 TRUE TRUE 3 time

22 Try out mutate

• still with my function but create a list

• rowwise is the clue

• use list before the function even if it returns a list

get_details_list <- function(url) {
my_filecolnames <- readr::read_csv(file = url, n_max = 1, show_col_types =
FALSE) %>%↪
colnames()

geo_column <- "geo" %in% my_filecolnames
time_column <- "time" %in% my_filecolnames
colnames_length <- length(my_filecolnames)

list(
"url" = url,
"has_geo" = geo_column,
"has_time" = time_column,
"colnames_length" = colnames_length,

"file_colnames" = my_filecolnames)
}

13

filenames_df %>%
rowwise() %>%
mutate(newcol = list(get_details_list(download_url))) %>%
unnest_wider(newcol, names_sep = "_") %>%
unnest_wider(newcol_file_colnames, names_sep = "__") %>%
ungroup() #%>% kableExtra::kable()

A tibble: 10 x 10
name download_url size newcol_url newcol_has_geo newcol_has_time
<chr> <chr> <int> <chr> <lgl> <lgl>

1 ddf--datapoints~ https://raw~ 43902 https://r~ TRUE TRUE
2 ddf--datapoints~ https://raw~ 9839 https://r~ TRUE TRUE
3 ddf--datapoints~ https://raw~ 81653 https://r~ TRUE TRUE
4 ddf--datapoints~ https://raw~ 42723 https://r~ TRUE TRUE
5 ddf--datapoints~ https://raw~ 84589 https://r~ TRUE TRUE
6 ddf--datapoints~ https://raw~ 84550 https://r~ TRUE TRUE
7 ddf--datapoints~ https://raw~ 87350 https://r~ TRUE TRUE
8 ddf--datapoints~ https://raw~ 65710 https://r~ TRUE TRUE
9 ddf--datapoints~ https://raw~ 84546 https://r~ TRUE TRUE
10 ddf--datapoints~ https://raw~ 40953 https://r~ TRUE TRUE
i 4 more variables: newcol_colnames_length <int>,
newcol_file_colnames__1 <chr>, newcol_file_colnames__2 <chr>,
newcol_file_colnames__3 <chr>

23 We cannot extract the info from str nor summary

summary_info <- summary(list(a = 1, b = 2, c = 3))
summary_info

Length Class Mode
a 1 -none- numeric
b 1 -none- numeric
c 1 -none- numeric

str(summary_info)

'summaryDefault' chr [1:3, 1:3] "1" "1" "1" "-none-" "-none-" "-none-" ...
- attr(*, "dimnames")=List of 2

14

..$: chr [1:3] "a" "b" "c"

..$: chr [1:3] "Length" "Class" "Mode"

class(summary_info)

[1] "summaryDefault" "table"

15

	Libraries
	Data
	Explore a GitHub repo of Gapminder
	Break the task down
	Download the list of files from GitHub
	Call the API
	JSON
	API response
	Extract the content part of an API response
	Structure of a file name item
	Parse JSON vs. Wrangle the list
	Library jsonlite
	Parse JSON from a character vector
	Simplify the structure
	Check it out for one file
	Setting up the loop 1
	The loop syntax explained
	The loop filled
	Add them to the data frame
	Without loop, use purrr::map
	Metadata explored
	Try out mutate
	We cannot extract the info from str nor summary

