2025-08-11
tibble [1,704 × 6] (S3: tbl_df/tbl/data.frame)
$ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
$ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
$ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
$ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
$ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
$ gdpPercap: num [1:1704] 779 821 853 836 740 ...
country continent year lifeExp
Afghanistan: 12 Africa :624 Min. :1952 Min. :23.60
Albania : 12 Americas:300 1st Qu.:1966 1st Qu.:48.20
Algeria : 12 Asia :396 Median :1980 Median :60.71
Angola : 12 Europe :360 Mean :1980 Mean :59.47
Argentina : 12 Oceania : 24 3rd Qu.:1993 3rd Qu.:70.85
Australia : 12 Max. :2007 Max. :82.60
(Other) :1632
pop gdpPercap
Min. :6.001e+04 Min. : 241.2
1st Qu.:2.794e+06 1st Qu.: 1202.1
Median :7.024e+06 Median : 3531.8
Mean :2.960e+07 Mean : 7215.3
3rd Qu.:1.959e+07 3rd Qu.: 9325.5
Max. :1.319e+09 Max. :113523.1
dplyr
like a vector, but 2 positions:
[rows_vector, columns vector ]
this always gives you a data frame, not vectors
mind the comma!!!
one position without comma \(\approx\) columns vector!
dplyr::pull
in base Raccess a column as a vector
gapminder
subset
function# A tibble: 142 × 3
year country pop
<int> <fct> <int>
1 1952 Afghanistan 8425333
2 1952 Albania 1282697
3 1952 Algeria 9279525
4 1952 Angola 4232095
5 1952 Argentina 17876956
6 1952 Australia 8691212
7 1952 Austria 6927772
8 1952 Bahrain 120447
9 1952 Bangladesh 46886859
10 1952 Belgium 8730405
# ℹ 132 more rows